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Abstract

What is a time-varying graph, or a time-varying topological space and more generally what does it mean
for a mathematical structure to vary over time? Here we introduce categories of narratives: powerful tools
for studying temporal graphs and other time-varying data structures. Narratives are sheaves on posets of
intervals of time which specify snapshots of a temporal object as well as relationships between snapshots
over the course of any given interval of time. This approach offers two significant advantages. First, when
restricted to the base category of graphs, the theory is consistent with the well-established theory of temporal
graphs, enabling the reproduction of results in this field. Second, the theory is general enough to extend results
to a wide range of categories used in data analysis, such as groups, topological spaces, databases, Petri nets,
simplicial complexes and many more. The approach overcomes the challenge of relating narratives of different
types to each other and preserves the structure over time in a compositional sense. Furthermore our approach
allows for the systematic relation of different kinds of narratives. In summary, this theory provides a consistent
and general framework for analyzing dynamic systems, offering an essential tool for mathematicians and data
scientists alike.

1 Introduction
We can never fully observe the underlying dynamics which govern nature. Instead we are left with two ap-
proaches; we call these: the ‘method of axioms’ and ‘method of data’. The first focuses on establishing mech-
anisms (specified via for example differential equations or automata) which agree with our experience of the
hidden dynamics we are trying to study. On the other hand, the ‘method of data’ emphasizes empirical observa-
tions, discerning appropriate mathematical structures that underlie the observed time-varying data and extract-
ing meaningful insights into the time-varying system. Both of these approaches are obviously interlinked, but
a lack of a formal treatment of what time-varying data is, prevents us from making it explicit.

In studying the data we can collect over time, we limit ourselves to the “visible” aspects of these hidden
dynamics. Thus, in much the same way as one can glean some (but perhaps not much) of the narrative of
Romeo and Juliet by only reading a page of the whole, we view time-varying data as an observable narrative
that tells a small portion of larger stories governed by more complex dynamics. This simple epistemological
stance appears implicitly in many areas of mathematics concerned with temporal or time-varying data. For
instance, consider the explosive birth of temporal graph theory. Here, one is interested in graphs whose ver-
tices and edges may come and go over time. To motivate these models, one tacitly appeals to the connection
between time-varying data and a hidden dynamical system that generates this data. A common example in
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the field of temporal graphs is that of opportunistic mobility [10]: physical objects in motion, such as buses,
taxis, trains, or satellites, transmit information between each other at limited distances, and snapshots of the
communication networks are recorded at various evenly-spaced instants in time. Further examples that assume
the presence of underlying dynamics include human and animal proximity networks, human communication
networks, collaboration networks, citation networks, economic networks, neuro-scientific networks, biological,
chemical, ecological, and epidemiological networks [18, 33, 22, 29, 21, 10].

Although it is clear that what makes data temporal is its link to an underlying dynamical system, this connec-
tion is in no way mathematically explicit and concrete. Indeed one would expect there to be further mathematical
properties of temporal data which allow us to distinguish a mere ℕ-indexed sequence of sets or graphs or groups,
say, from their temporal analogues. As of yet, though, no such distinction exists. For example think of temporal
graphs once again. Modulo embellishing attributes such as latencies or wait times, typical definitions simply
require temporal graphs to be sequences of graphs [24]. No further semantics on the relationships between time
steps is imposed. And these definitions never explicitly state what kind of global information should be tracked
by the temporal data: is it the total accumulation of data over time or is it the persistent structure that emerges
in the data throughout the evolution of the underlying dynamical system?

In this paper we ask: “how does one build a robust and general theory of temporal data?”. To address this
question, we first draw inspiration from the theory of time-varying graphs. This theory has received considerable
attention recently [18, 33, 22, 21, 10, 24, 15, 16, 38, 14, 5, 30, 25, 23] and we can thus learn valuable lessons
about the kinds of questions one would like to ask and the kinds of manipulations one would like to perform on
temporal data.

We determine from these considerations that much of what makes data temporal is whether it is “in the
memory” [28] in the sense of st Augustine’s Confessions [2, 3]: any good definition of a time-varying or tem-
poral data should not only record what occurred at various instants in time, but it should also keep track of the
relationships between successive time-points. We find that, hidden in this seemingly simple statement, is the
structure of a sheaf : a temporal set (or graph or group, etc.) should consist of an assignment of a data set at
each time point together with consistent assignments of sets over each interval of time in such a way that the
sets assigned on intervals are determined by the sets assigned on subintervals. The sheaf-theoretic perspective
we adopt here builds upon Schultz, Spivak and Vasilakopoulou’s [39] notion of an interval sheaf and it allows
for a very general definition of temporal objects.

Related Work Other than Schultz, Spivak and Vasilakopoulou’s [39] approach to studying dynamical sys-
tems through a sheaf-theoretic lens, there have been other investigations of time-varying structures which use
tools from sheaf theory. An example within the Applied Topology and Topological Data Analysis communities
is the examination of connected components over time using Reeb graphs. For instance, in [13], the authors
leverage the established fact that the category of Reeb graphs is equivalent to a certain class of cosheaf. This
equivalence is exploited to define a distance between Reeb graphs, which proves to be resilient to perturba-
tions in the input data. Furthermore, it serves the purpose of smoothing the provided Reeb graphs in a manner
that facilitates a geometric interpretation. Similarly, The study of the persistence of topological features in time-
varying spaces and point-cloud datasets has given rise to the formulation of the theory of persistence for “Zigzag
diagrams”. This theory extends beyond persistent homology and also has a cosheaf interpretation [12, 11]. Al-
though it is beyond the scope of the current paper, we believe that exploring the connections between our work
these notions from applied topology is an exciting direction for further study.

Our contribution is twofold; first we distill the lessons learned from temporal graph theory into the following
set of desiderata for any mature theory of temporal data:
(D1) (Categories of Temporal Data) Any theory of temporal data should define not only time-varying data,

but also appropriate morphisms thereof.
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(D2) (Cumulative and Persistent Perspectives) In contrast to being a mere sequence, temporal data should
explicitly record whether it is to be viewed cumulatively or persistently. Furthermore there should be
methods of conversion between these two viewpoints.

(D3) (Systematic “Temporalization”) Any theory of temporal data should come equipped with systematic
ways of obtaining temporal analogues of notions relating to static data.

(D4) (Object Agnosticism) Theories of temporal data should be object agnostic and applicable to any kinds
of data originating from given underlying dynamics.

(D5) (Sampling) Since temporal data naturally arises from some underlying dynamical system, any theory of
temporal data should be seamlessly interoperable with theories of dynamical systems.

Our second main contribution is to introduce categories of narratives, an object-agnostic theory of time-varying
objects which satisfies the desiderata mentioned above. As a benchmark, we then observe how standard ideas of
temporal graph theory crop up naturally when our general theory of temporal objects is instantiated on graphs.

We choose to see this task of theory-building through a category theoretic lens for three reasons. First of
all this approach directly addresses our first desideratum (D1), namely that of having an explicit definition of
isomorphisms (or more generally morphisms) of temporal data. Second of all, we adopt a category-theoretic
approach because its emphasis, being not on objects, but on the relationships between them [36, 4], makes it
particularly well-suited for general, object-agnostic definitions. Thirdly, sheaves, which are our main technical
tool in the definition of time-varying data, are most naturally studied in category theoretic terms [37, 31].

1.1 Accumulating Desiderata for a General Theory of Temporal Data: Lessons
from Temporal Graph Theory.

There are as many different definitions of temporal graphs as there are application domains from which the
notion can arise. This has lead to a proliferation of many subtly different concepts such as: temporal graphs,
temporal networks, dynamic graphs, evolving graphs and time-varying graphs [18, 33, 22, 21, 10, 24]. Each
model of temporal graphs makes different assumptions on what may vary over time. For example, are the
vertices fixed, or may they change? Does it take time to cross an edge? And does this change as an edge appears
and disappears? If an edge reappears after having vanished at some point in time, in what sense has it returned,
is it the same edge?

The novelty of these fields and the many fascinating direction for further enquiry they harbour make the
mathematical treatment of temporal data exciting. However, precisely because of the field’s youth, we believe
that it is crucial to pause and distill the lessons we have learnt from temporal graphs into desiderata for the
field of temporal data more broadly. In what follows we shall briefly contextualize each desideratum mentioned
above in turn while also signposting how our theory addresses each point. We begin with (D1).

1. There has been no formal treatment of the notion of morphisms of temporal graphs and this is true regard-
less of which definition of temporal graphs one considers and which specific assumptions one makes on
their internal structure. This is a serious impediment to the generalization of the ideas of temporal graphs
to other time-varying structures since any such general theory should be invariant under isomorphisms.
Thus we distill our first desideratum (D1): theories of temporal data should not only concern themselves
with what time-varying data is, but also with what an appropriate notion of morphism of temporal data
should be.
Narratives, our definition of time-varying data (Definition 2.8), are stated in terms of certain kinds of
sheaves. This immediately addresses desideratum (D1) since it automatically equips us with a suitable
and well-studied [37, 31] notion of a morphism of temporal data, namely morphisms of sheaves. Then,
by instantiating narratives on graphs in Section 2.4, we define categories of temporal graphs as a special
case of the broader theory.

3



2. Our second desideratum is born from observing that all current definitions of temporal graphs are equiv-
alent to mere sequences of graphs [10, 24] (snapshots) without explicit mention of how each snapshot
is related to the next. To understand the importance of this observation, we must first note that in any
theory of temporal graphs, one always finds great use in relating time-varying structure to its older and
more thoroughly studied static counterpart. For instance any temporal graph is more or less explicitly
assumed to come equipped with an underlying static graph [10, 24]. This is a graph consisting of all
those vertices and edges that were ever seen to appear over the course of time and it should be thought
of as the result of accumulating data into a static representation. Rather than being presented as part and
parcel of the temporal structure, the underlying static graphs are presented as the result of carrying out a
computation – that of taking unions of snapshots – involving input temporal graphs. The implicitness of
this representation has two drawbacks. The first is that it does not allow for vertices or edges to merge or
divide over time; these are very natural operations that one should expect of time-varying graphs in the
‘wild’ (think for example of cell division or acquisitions or merges of companies). The second drawback
of the implicitness of the computation of the underlying static graph is that it conceals another very natural
static structure that always accompanies any given temporal graph, we call it the persistence graph. This
is the static graph consisting of all those vertices and edges which persisted throughout the entire life-span
of the temporal graph. We distill this general pattern into desideratum (D2): temporal data should come
explicitly equipped with either a cumulative or a persistent perspective which records which information
we should be keeping track of over intervals of time.
Thanks to categorical duality, our narratives satisfy desideratum (D2) in the most natural way possible:
sheaves encode the persistence model while co-sheaves (the dual of a sheaf) encode the accumulation
model. As we will show, while these two perspectives give rise to equivalences on certain subcategories
of temporal graphs, in general, when one passes to arbitrary categories of temporal objects – such as
temporal groups, for example – this equivalence weakens to an adjunction (this is Theorem 2.10; roughly
one can think of this as a Galois connection [17]). In particular our results imply that in general there is
the potential for a loss of information when one passes from one perspective (the persistent one, say) to
another (the cumulative one) and back again. This observation, which has so far been ignored, is of great
practical relevance since it means that one must take a great deal of care when collecting temporal data
since the choices of mathematical representations may not be interchangeable. We will prove the existence
of the adjunction between cumulative and persistent temporal graphs in Theorem 2.10 and discuss all of
these subtleties in Section 2.3. Furthermore, this adjunction opens interesting directions for future work
investigating the relationship between the persistent and cumulative perspectives present in topological
data analysis; for instance, the program of “generalized persistence” initiated by Patel and developed in
the work of Kim and Memoli [26].

3. Another common theme arising in temporal graph theory is the relationship between properties of static
graphs and their temporal analogues. At first glance, one might naïvely think that static properties can be
canonically lifted to the temporal setting by simply defining them in terms of underlying static graphs.
However, this approach completely forgets the temporal structure and is thus of no use in generalizing
notions such as for example connectivity or distance where temporal information is crucial to the intended
application [33, 10, 15, 9]. Moreover, the lack of a systematic procedure for ‘temporalizing’ notions from
static graph theory is more than an aesthetic obstacle. It fuels the proliferation of myriads of subtly
different temporal analogues of static properties. For instance should a temporal coloring be a coloring
of the underlying static graph? What about the underlying persistence graph? Or should it instead be
a sequence of colorings? And should the colorings in this sequence be somehow related? Rather than
accepting this proliferation as a mere consequence of the greater expressiveness of temporal data, we
sublime these issues into desideratum (D3): any theory of temporal data should come equipped with a
systematic way of ‘temporalizing’ notions from traditional, static mathematics.
In Section 2.5, we show how our theories of narratives satisfies desideratum (D3). We do so systemati-
cally by leveraging two simple, but effective functors: the change of temporal resolution functor (Propo-
sition 2.19) and the change of base functor (Propositions 2.15 and 2.16). The first allows us to modify
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narratives by rescaling time, while the second allows us to change the kind of data involved in the narra-
tive (e.g. passing from temporal simplicial complexes to temporal graphs). Using these tools, we provide
a general way for temporalizing static notions which roughly allows one to start with a class of objects
which satisfy a given property (e.g. the class of paths, if one is thinking about temporal graphs) and ob-
tain from it a class of objects which temporally satisfy that property (e.g. the notion of temporal paths).
As an example (other than temporal paths which we consider in Proposition 2.17) we apply our abstract
machinery to recover in a canonical way (Proposition 2.22) the notion of a temporal clique (as defined by
Viard, Latapy and Magnien [42]). Crucially, the only information one needs to be given is the definition
of a clique (in the static sense). Summarizing this last point with a slogan, one could say that ‘our for-
malism already knew about temporal cliques given solely the notion of a clique as input’. Although it is
beyond the scope of the present paper, we believe that this kind of reasoning will prove to be crucial in
the future for a systematic study of how theories of temporal data (e.g. temporal graph theory) relate to
their static counterparts (e.g. graph theory).

4. Temporal graphs are definitely ubiquitous forms of temporal data [18, 33, 22, 21, 10, 24], but they are by
far not the only kind of temporal data one could attach, or sample from an underlying dynamical system.
Thus Desideratum (D4) is evident: to further our understanding of data which changes with time, we
cannot develop case by case theories of temporal graphs, temporal simplicial complexes, temporal groups
etc., but instead we require a general theory of temporal data that encompasses all of these examples as
specific instances and which allows us to relate different kinds of temporal data to each other.
Our theory of narratives addresses part of Desideratum (D4) almost out of the box: our category theoretic
formalism is object agnostic and can be thus applied to mathematical objects coming from any such
category thereof. We observe through elementary constructions that there are change of base functors
which allow one to convert temporal data of one kind into temporal data of another. Furthermore, we
observe that, when combined with the adjunction of Theorem 2.10, these simple data conversions can
rapidly lead to complex relationships between various kinds of temporal data.

5. As we mentioned earlier, our philosophical contention is that on its own data is not temporal; it is through
originating from an underlying dynamical system that its temporal nature is distilled. This link can and
should be made explicit. But until now the development of such a general theory is impeded by a great
mathematical and linguistic divide between the communities which study dynamics axiomatically (e.g.
the study of differential equations, automata etc.) and those who study data (e.g. the study of time series,
temporal graphs etc.). Thus we distill our last Desideratum (D5): any theory of temporal data should be
seamlessly interoperable with theories of dynamical systems from which the data can arise.
This desideratum is ambitious enough to fuel a research program and it thus beyond the scope of a single
paper. However, for any such theory to be developed, one first needs to place both the theory of dynam-
ical systems and the theory of temporal data on the same mathematical and linguistic footing. This is
precisely how our theory of narratives addresses Desideratum (D5): since both narratives (our model of
temporal data) and Schultz, Spivak and Vasilakopoulou’s interval sheaves [39] (a general formalism for
studying dynamical systems) are defined in terms of sheaves on categories of intervals, we have bridged a
significant linguistic divide between the study of data and dynamics. We expect this to be a very fruitful
line of further research in the years to come.

2 Categories of Temporal Data
Our thesis is that temporal data should be represented mathematically via sheaves (or cosheaves, their categori-
cal dual). Sheaf theory, already established in the 1950s as a crucial tool in algebraic topology, complex analysis,
and algebraic geometry, is canonically the study of local-to-global data management. For our purposes here,
we will only make shallow use of this theory; nevertheless, we anticipate that more profound sheaf-theoretic
tools, such as cohomology, will play a larger role in the future study of temporal data. To accommodate readers
from disparate backgrounds, we will slowly build up the intuition for why one should represent temporal data
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as a sheaf by first peeking at examples of temporal sets in Section 2.1. We will then formally introduce interval
sheaves (Section 2.2) and immediately apply them by collecting various examples of categories of temporal
graphs (Section 2.4) before ascending to more abstract theory.

2.1 Garnering Intuition: Categories of Temporal Sets.
Take a city, like Venice, Italy, and envision documenting the set of ice cream companies that exist in that city
each year. For instance, in the first year, there might be four companies {𝑎1,𝑎2, 𝑏, 𝑐}. One could imagine that
from the first year to the next, company 𝑏 goes out of business, company 𝑐 continues into the next year, a new
ice cream company 𝑏′ is opened, and the remaining two companies 𝑎1 and 𝑎2 merge into a larger company 𝑎⋆.
This is an example of a discrete temporal set viewed from the perspective of persistence: not only do we record
the sets of companies each year, but instead we also keep track of which companies persist from one year to the
next and how they do so. Diagramatically we could represent the first three years of this story as follows.

𝐹 2
1 = {𝑎1,𝑎2, 𝑐} 𝐹 3

2 = {𝑎⋆, 𝑏′}

𝐹 1
1 ∶= {𝑎1,𝑎2, 𝑏, 𝑐} 𝐹 2

2 ∶= {𝑎⋆, 𝑏′, 𝑐} 𝐹 3
3 ∶= {𝑎⋆, 𝑏′, 𝑐′}

𝑓 1
1,2 𝑓2

1,2 𝑓2
2,3 𝑓 3

2,3

(1)

This is a diagram of sets and the arrows are functions between sets. In this example we have that 𝑓 1
1,2 is the

canonical injection of 𝐹 2
1 into 𝐹 1

1 while 𝑓 2
1,2 maps 𝑐 to itself and it takes both 𝑎1 and 𝑎2 to 𝑎⋆ (representing the

unification of the companies 𝑎1 and 𝑎2).
Diagram 1 is more than just a time-series or a sequence of sets: it tells a story by relating (via functions

in this case) the elements of successive snapshots. It is obvious, however, that from the relationships shown in
Diagram 1 we should be able to recover longer-term relationships between instances in time. For instance we
should be able to know what happened to the four companies {𝑎1,𝑎2, 𝑏, 𝑐} over the course of three years: by the
third year we know that companies 𝑎1 and 𝑎2 unified and turned into company 𝑎⋆, companies 𝑏 and 𝑐 dissolved
and ceased to exist and two new companies 𝑏′ and 𝑐′ were born.

The inferences we just made amounted to determining the relationship between the sets 𝐹 1
1 and 𝐹 3

1 com-
pletely from the data specified by Diagram 1. Mathematically this is an instance of computing 𝐹 3

1 as a fibered
product (or pullback) of the sets 𝐹 2

1 and 𝐹 3
2 :

𝐹 3
1 ∶= {(𝑥,𝑦) ∈ 𝐹 2

1 ×𝐹 3
2 ∣ 𝑓 2

1,2(𝑥) = 𝑓 2
2,3(𝑦)}.

Diagrammatically this is drawn as follows.
𝐹 3
1 = {(𝑎1,𝑎⋆), (𝑎2,𝑎⋆)}

𝐹 2
1 = {𝑎1,𝑎2, 𝑐} 𝐹 3

2 = {𝑎⋆, 𝑏′}

𝐹 1
1 ∶= {𝑎1,𝑎2, 𝑏, 𝑐} 𝐹 2

2 ∶= {𝑎⋆, 𝑏′, 𝑐} 𝐹 3
3 ∶= {𝑎,𝑏′, 𝑐′}

⌟

(2)

The selection of the aforementioned data structures, namely sets and functions, allowed us to encode a
portion of the history behind the ice cream companies in Venice. If we were to delve deeper and investigate,
for instance, why company 𝑐 disappeared, we could explore a cause within the dynamics of the relationships
between ice cream companies and their suppliers. These relationships can be captured using directed graphs,
as illustrated in Diagram 3, where there is an edge from 𝑥 to 𝑦 if the former is a supplier to the latter. This
diagram reveals that company 𝑎2 not only sold ice cream but also supplied companies 𝑎1 and 𝑐. Notably, with
the dissolution of company 𝑏 in the second year, it becomes conceivable that the closure of company 𝑐 occurred
due to the cessation of its supply source.
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𝐹 1
1 𝐹 2

2

𝑎1

𝑎2 𝑐
𝐹 2
1

𝑏′

𝑎∗

𝐹 3
2

𝐹 3
3𝑏′

𝑎∗ 𝑐

𝑏′

𝑎∗

𝑐′

𝑓 2
2,3𝑓 1

1,2 𝑓 2
1,2 𝑓 3

2,3

𝑎1

𝑎2

𝑐

𝑏

(3)
More generally, within a system, numerous observations can be made. Each observation is intended to

capture a different facet of the problem. This diversity translates into the necessity of employing various data
structures, such as sets, graphs, groups, among others, to represent relevant mathematical spaces underlying the
data. Our goal in this work is to use a language that enables us to formally handle data whose snapshots are
modeled via commonly used data structures in data analysis. As we will explain in Section 2.2, the language we
are looking for is that of sheaves, and the structure hidden in Diagrams 2 and 3 is that of a sheaf on a category of
intervals. Sheaves are most naturally described in category-theoretic terms and, as is always the case in category
theory, they admit a categorically dual notion, namely cosheaves. As it turns out, while sheaves capture the
notion of persistent objects, cosheaves on interval categories capture instead the idea of an underlying static
object that is accumulated over time. Thus we see (this will be explained formally in Section 2.3) that the two
perspectives – persistent vs cumulative – of our second desideratum are not merely convenient and intuitively
natural, they are also dual to each other in a formal sense.

2.2 Narratives
From this section onward we will assume basic familiarity with categories, functors and natural transforma-
tions. For a very short, self-contained introduction to the necessary background suitable for graph theorists, we
refer the reader to the thesis by Bumpus [8, Sec. 3.2]. For a thorough introduction to the necessary category-
theoretic background, we refer the reader to any monograph on category theory (such as Riehl’s textbook [36]
or Awodey’s [4]). We will give concrete definitions of the specific kinds of sheaves and co-sheaves that feature
in this paper; however, we shall not recall standard notions in sheaf theory. For an approachable introduction to
any notion from sheaf theory not explicitly defined here, we refer the reader to Rosiak’s excellent textbook [37].

For most, the first sheaves one encounters are sheaves on a topological space. These are assignments of data
to each open of a given topological space in such a way that these data can be restricted along inclusions of opens
and such that the data assigned to any open  of the space is completely determined from the data assigned to
the opens of any cover of  . In gradually more concrete terms, a 𝖲𝖾𝗍-valued sheaf  on a topological space 
is a contravariant functor (a presheaf )  ∶ ()𝑜𝑝 → 𝖲𝖾𝗍 from the poset of opens in  to sets which satisfies
certain lifting properties relating the values of  on any open  to the values of ( ( 𝑖))𝑖∈𝐼 for any open
cover (𝑈𝑖)𝑖∈𝐼 of  . Here we are interested in sheaves that are: (1) defined on posets (categories) of closed
intervals of the non-negative reals (or integers) and (2) not necessarily 𝖲𝖾𝗍-valued. The first requirement has
to do with representing time. Each point in time 𝑡 is represented by a singleton interval [𝑡, 𝑡] and each proper
interval [𝑡1, 𝑡2] accounts for the time spanned between its endpoints. The second requirement has to do with
the fact that we are not merely interested in temporal sets, but instead we wish to build a more general theory
capable or representing with a single formalism many kinds of temporal data such as temporal graphs, temporal
topological spaces, temporal databases, temporal groups etc..

Thus one can see that, in order to specify a sheaf, one requires: (1) a presheaf  ∶ 𝖢𝑜𝑝 →𝖣 from a category
𝖢 to a category 𝖣, (2) a notion of what should count of as a “cover” of any object of 𝖢 and (3) a formalization of
how  should relate objects to their covers. To address the first point we will first give a reminder of the more
general notation and terminology surrounding presheaves.
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Definition 2.1. For any small category 𝖢 (such as 𝖨 or 𝖨ℕ) we denote by 𝖣𝖢 the category of 𝖣-valued
co-presheaves on 𝖢; this has functors 𝑃 ∶ 𝖢 → 𝖣 as objects and natural transformations as morphisms.
When we wish to emphasize contravariance, we call 𝖣𝖢𝑜𝑝 the category of 𝖣-valued presheaves on 𝖢.

The second point – on choosing good notions of ‘covers’ – is smoothly handled via the notion of a Grothendieck
topology (see Rosiak’s textbook [37] for a formal definition). Categories equipped with a choice of a Grothendieck
topology are known as sites and the following definition (due to Schultz, Spivak and Vasilakopoulou [39])
amounts to a way of turning categories of intervals into sites by specifying what counts as a valid cover of any
interval.

Definition 2.2 (Interval categories [40]). The category of intervals, denoted 𝖨𝗇𝗍 is the category having
closed intervals [𝓁′,𝓁] in ℝ+ (the non-negative reals) as objects and orientation-preserving isometries
as morphisms. Analogously, one can define the category 𝖨𝗇𝗍ℕ of discrete intervals by restricting only
to ℕ-valued intervals. These categories can be turned into sites by equipping them with the Johnstone
coverage [40] which stipulates that a cover of any interval [𝓁,𝓁′] is a partition into two closed intervals
([𝓁, 𝑝], [𝑝,𝓁′]).

Schultz, Spivak and Vasilakopoulou defined interval sites in order to speak of dynamical systems as sheaves [40].
Here we are instead interested in temporal data. As most would expect, data should in general be less temporally
interwoven compared to its dynamical system of provenance (after all the temporal data should carry less infor-
mation than a dynamical system). This intuition1 motivates why we will not work directly with Schultz, Spivak
and Vasilakopoulou’s definition, but instead we will make use of the following stricter notion of categories of
strict intervals.2

Definition 2.3 (Strict Embedding Intervals). We denote by 𝖨 (resp. 𝖨ℕ) the full subcategory (specifically
a join-semilattice) of the subobject poset of ℝ (resp. ℕ) whose objects are intervals.

Clearly, the categories defined above are subcategories of 𝖨𝗇𝗍 (resp. 𝖨𝗇𝗍ℕ) since their morphisms are orientation-
preserving isometries. Notice that the categories 𝖨 (resp. 𝖨ℕ) are posetal and hence observe that the poset of
subobjects any interval [𝑎,𝑏] is a subcategory of 𝖨 (resp 𝖨ℕ). We denote this subcategory as 𝖨(−, [𝑎,𝑏]) (resp.
𝖨ℕ(−, [𝑎,𝑏])). In what follows, since we will want to speak of discrete, continuous, finite and infinite time, it
will be convenient to have terminology to account for which categories we will allow as models of time. We
will call such categories time categories.

Notation 2.4. We will refer to 𝖨, 𝖨ℕ and any sub-join-semilattices thereof as time categories.
The following lemma states that time categories can be given Grothendieck topologies in much the same

way as the interval categories of Definition 2.2. Since the proof is completely routine, but far too technical for
newcomers to sheaf theory, we will omit it assuming that the readers well-versed in sheaf theory can reproduce
it on their own.

Lemma 2.5. Any time category forms a site when equipped with the Johnstone coverage.

Equipped with suitable sites, we are now ready to give the definition of the categories 𝖢𝗎(𝖳,𝖣) and 𝖯𝖾(𝖳,𝖣)
where 𝖳 is any time category. We will refer to either one of these as categories of 𝖣-narratives in 𝖳-time:
intuitively these are categories whose objects are time-varying objects of 𝖣. For instance, taking 𝖣 to be 𝖲𝖾𝗍 or
𝖦𝗋𝗉𝗁 one can speak of time varying sets or time-varying graphs. The difference between 𝖯𝖾(𝖳,𝖣) and 𝖢𝗎(𝖳,𝖣)
will be that the first encodes 𝖣-narratives according to the persistent perspective (these will be 𝖣-valued sheaves
on 𝖳), while the second employs a cumulative one (these will be 𝖣-valued co-sheaves on 𝖳).

1By comparing examples of interval sheaves with sheaves on categories of strict intervals, the reader can verify that there is a sense in
which these intuitions can be made mathematically concrete (in order to not derail the presentation of this paper, we omit these examples).

2Note that there is a sense in which a functor defined on a subcategory of some category 𝖢 has greater freedom compared to a functor
defined on all of 𝖢. This is because there are fewer arrows (and hence fewer equations) which need to be accounted for in the subcategory.
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Definition 2.6. We will say that the narratives are discrete if the time category involved is either 𝖨ℕ or any
sub-join-semilattices thereof. Similarly we will say that a category of narratives has finite lifetime if its
time category has finitely many objects or if it is a subobject poset generated by some element of 𝖨 or 𝖨ℕ.

Now we are ready to give the definition of a sheaf with respect to any of the sites described in Lemma 2.5.
The reader not interested in sheaf theory should take the following proposition (whose proof is a mere instanti-
ation of the standard definition of a sheaf on a site) as a definition of a sheaf on a time category.

Proposition 2.7 (𝖳-sheaves and 𝖳-cosheaves). Let 𝖳 be any time category equipped with the Johnstone
coverage. Suppose 𝖣 is a category with pullbacks, then a 𝖣-valued sheaf on 𝖳 is a presheaf 𝐹 ∶ 𝖳𝑜𝑝 →𝖣
satisfying the following additional condition: for any interval [𝑎,𝑏] and any cover ([𝑎,𝑝], [𝑝,𝑏]) of this
interval, 𝐹 ([𝑎,𝑏]) is the pullback 𝐹 ([𝑎,𝑝])×𝐹 ([𝑝,𝑝]) 𝐹 ([𝑝,𝑏]).

Similarly, supposing 𝖣 to be a category with pushouts, then a 𝖣-valued cosheaf on 𝖳 is a copresheaf
𝐹 ∶ 𝖳→𝖣 satisfying the following additional condition: for any interval [𝑎,𝑏] and any cover ([𝑎,𝑝], [𝑝,𝑏])
of this interval, 𝐹 ([𝑎,𝑏]) is the pushout 𝐹 ([𝑎,𝑝])+𝐹 ([𝑝,𝑝]) 𝐹 ([𝑝,𝑏]).

Proof. By definition, a sheaf (resp. cosheaf) on the Johnstone coverage is simply a presheaf which takes each
cover (a partion of an interval) to a limit (resp. colimit). ■

Definition 2.8. We denote by 𝖯𝖾(𝑇 ,𝖣) (resp. 𝖢𝗎(𝑇 ,𝖣)) the category of𝖣-valued sheaves (resp. cosheaves)
on 𝖳 and we call it the category of persistent 𝖣-narratives (resp. cumulative 𝖣-narratives) with 𝖳-time.

By this point the reader has already seen an example of a persistent discrete 𝖲𝖾𝗍-narrative. This was Dia-
gram 2 (it shows the evolution of the temporal set only over three time steps). In contrast, the following is not
a persistent 𝖲𝖾𝗍-narrative. To see this, observe that 𝐹 2

1 ×𝐹 2
2
𝐹 3
2 is a pullback of two subsets (notice the hooked

arrows denoting injective maps) of size two. Thus 𝐹 2
1 ×𝐹 2

2
𝐹 3
2 has cardinality at most four, but 𝐹 3

1 (which is
shorthand for 𝐹 ([1,3])) has five elements.

𝐹 3
1 = {𝑎,𝑤,𝑥,𝑦,𝑧}

𝐹 2
1 = {𝑎,𝑐} 𝐹 3

2 = {𝑎,𝑏′}

𝐹 1
1 ∶= {𝑎,𝑏,𝑐} 𝐹 2

2 ∶= {𝑎,𝑏′, 𝑐} 𝐹 3
3 ∶= {𝑎,𝑏′, 𝑐′}

When writing examples, it is useful to observe that all discrete 𝖢-narratives (see Definition 2.6) are com-
pletely determined by the objects and morphisms associated to intervals of length zero and one. This also
implies, for example, that, in order to store a discrete graph narrative with 𝑡-time steps, it suffices to store 2𝑡−1
graphs (one for each interval of length zero and one for each interval of length one) and 2(𝑡−1) graph homo-
morphisms.

Proposition 2.9. Suppose we are given a objects 𝐹 ([𝑡, 𝑡]) and 𝐹 ([𝑡, 𝑡+1]) of 𝖢 for each time point [𝑡, 𝑡] and
for each length-one interval [𝑡, 𝑡+1] and that we are furthermore given a span 𝐹 ([𝑡, 𝑡])← 𝐹 ([𝑡, 𝑡+1])→
𝐹 ([𝑡+1, 𝑡+1]) for each pair of successive times 𝑡 and 𝑡+1. Then there is (up to isomorphism) a unique
discrete 𝖢-narrative which agrees with these choices of objects and spans. Conversely, a mere sequence
of objects of 𝖢 (i.e. a choice of one object for each interval of length zero) does not determine a unique
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discrete 𝖢-narrative.

Proof. To see the first point, simply observe that applying the sheaf condition to this data leaves no choice for
the remaining assignments on objects and arrows: these are completely determined by pullback and pullbacks
are unique up to isomorphism.

On the other hand, suppose we are only given a list of objects of 𝖢, one for each interval of length zero.
Then, having to satisfy the sheaf condition does not determine a unique 𝖢-narrative that agrees with the given
snapshots. To see this, observe that any length-one interval [𝑡, 𝑡+1] has exactly one cover; namely the par-
tition ([𝑡, 𝑡], [𝑡, 𝑡+1]). Thus, applying the sheaf condition, we we have that 𝐺([𝑡, 𝑡+1]) must be the pullback
𝐺([𝑡, 𝑡]) ×𝐺([𝑡,𝑡])𝐺([𝑡, 𝑡+1]). However, this pullback is always isomorphic to 𝐺([𝑡, 𝑡+1]) for any choice of the
object 𝐺([𝑡, 𝑡+1]) since pullbacks preserve isomorphisms (and since the restriction of 𝐺([𝑡, 𝑡]) to itself is its
identity morphism). ■

For an example of a cumulative narrative, consider the following diagram (recall that, since they are co-
sheaves, cumulative narratives are covariant functors).

𝐹 3
1 = {𝑎⋆, 𝑏,𝑏′, 𝑐, 𝑐′}

𝐹 2
1 = {𝑎⋆, 𝑏,𝑏′, 𝑐} 𝐹 3

2 = {𝑎⋆, 𝑏′, 𝑐, 𝑐′}

𝐹 1
1 ∶= {𝑎1,𝑎2, 𝑏, 𝑐} 𝐹 2

2 ∶= {𝑎⋆, 𝑏′, 𝑐} 𝐹 3
3 ∶= {𝑎⋆, 𝑏′, 𝑐′}

⌟

We can think of this diagram (where we denoted injections via hooked arrows) as representing a cumulative
view of the example from Section 2.1 of ice cream companies over time. Note that not all arrows are injections
(the arrow 𝐹 1

1 → 𝐹 2
1 marked in blue is not injective since it takes every company to itself except for 𝑎1 and 𝑎2which are both mapped to 𝑎⋆). Thus one can think of the cumulative perspective as accumulating not only the

data (the companies) seen so far, but also the relationships that are ‘discovered’ thus far in time.

2.3 Relating the Cumulative and Persistent Perspectives
This section marks a significant stride toward realizing our Desideratum (D2) in the development of a theory for
temporal structures. This desideratum emerges from the realization that, as we extend our focus to encompass
categories beyond graphs, there exists the potential for information loss during the transition between the cumu-
lative and persistent underlying data of a temporal structure. The present section systematically characterizes
such transitions. Our Theorem 2.10 yields two key results: the functoriality of transitioning from Cumulative to
Persistent and vice versa, and the establishment of the adjunction 𝒫 ⊣𝒦 formally linking these perspectives.

Theorem 2.10. Let 𝖣 be category with limits and colimits. There exist functors 𝒫 ∶ 𝖢𝗎(𝖳,𝖣)→ 𝖯𝖾(𝖳,𝖣)
and 𝒦 ∶ 𝖯𝖾(𝖳,𝖣)→𝖢𝗎(𝖳,𝖣). Moreover, these functors are adjoint to each other:

𝖢𝗎(𝖳,𝖣) 𝖯𝖾(𝖳,𝖣)
𝒫

𝒦

⊣

Proof. Passing from the Cumulative to the Persistent perspective is functorial: We define 𝒫 as the map that
assigns to any cosheaf 𝐹 ∶ 𝐼 →𝖣 the sheaf 𝒫 (𝐹 )∶ 𝐼𝑜𝑝 →𝖣. It is defined on objects by:

𝒫 (𝐹 )∶ [𝑎,𝑏]↦ lim(𝖳(−, [𝑎,𝑏])↪ 𝐼
𝐹
←←←←←←←←→ 𝖣),
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where the existence of lim(𝖳(−, [𝑎,𝑏]) ↪ 𝐼
𝐹
←←←←←←←←→ 𝖣) follows from the hypothesis, as 𝖳(−, [𝑎,𝑏]) ↪ 𝐼

𝐹
←←←←←←←←→ 𝖣) is a

diagram in 𝖣. Henceforth, we shall use the notations 𝐹 𝑏
𝑎 and 𝒫 (𝐹 )𝑏𝑎 in place of 𝐹 ([𝑎,𝑏]) and 𝒫 (𝐹 )([𝑎,𝑏]),

respectively. Furthermore, 𝒫 (𝐹 ) is defined on arrows as follows:

𝒫 (𝐹 )∶
(

[𝑎′, 𝑏′]
𝑓
←←←←←←→ [𝑎,𝑏]

)

↦
(

𝒫 (𝐹 )𝑏𝑎
𝒫 (𝐹 )𝑓
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝒫 (𝐹 )𝑏

′

𝑎′
)

,

where the existence and uniqueness of 𝒫 (𝐹 )𝑓 follows from the unique map property of 𝒫 (𝐹 )𝑏′𝑎′ . The fact
that 𝒫 (𝐹 ) maps identities in identities and respects composition follows from analogous arguments, and the
sheaf condition follows from the definition.

Passing from the Persistent to the Cumulative perspective is functorial: We define a functor 𝒦 ∶ 𝖯𝖾(𝖳,𝖣)→
𝖢𝗎(𝖳,𝖣) which takes any sheaf 𝐹 ∶ 𝐼𝑜𝑝 →𝖣 to the cosheaf 𝒦 (𝐹 )∶ 𝐼 →𝖣𝑜𝑝. It is defined on objects by:

𝒦 (𝐹 )∶ [𝑎,𝑏]↦ colim(𝖳(−, [𝑎,𝑏])↪ 𝐼
𝐹
←←←←←←←←→ 𝖣).

Hereafter, let 𝒦 (𝐹 )𝑏𝑎 denote 𝒦 (𝐹 )([𝑎,𝑏]). Moreover, 𝒦 (𝐹 ) is defined on arrows as follows:

𝒦 (𝐹 )∶
(

[𝑎′, 𝑏′]
𝑓
←←←←←←→ [𝑎,𝑏]

)

↦
(

𝒦 (𝐹 )𝑏
′

𝑎′
𝒦 (𝐹 )𝑓
←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝒦 (𝐹 )𝑏𝑎.

)

Functoriallity follows from dual arguments to those used for 𝒫 (𝐹 ), and the sheaf condition follows from
the definition.

The two perspectives are related by the adjunction 𝒫 ⊣𝒦 : We will prove that there exist an adjunction by
building a pair of natural transformations 𝟣𝖢𝗎(𝖨,𝖣)

𝜂
←←←←←←→𝒦𝒫 and 𝒫𝒦

𝜖
←←←←←←→ 𝟣𝖯𝖾(𝖨,𝖣) that make the triangle identities

commute:

𝒫 𝒫𝒦𝒫 𝒦 𝒦𝒫𝒦

𝒫 𝒦

𝒫 𝜂

𝜖𝒫
𝟣𝒫

𝜂𝒦

𝒦𝜖
𝟣𝒦

We need to define the components 𝟣𝖢𝗎(𝖨,𝖣)(𝐹 )
𝜂(𝐹 )
←←←←←←←←←←←←←←←→ 𝒦𝒫 (𝐹 ) for every cosheaf in 𝖢𝗎(𝖨,𝖣). This involves

choosing natural transformations 𝜂𝐹 𝑏
𝑎
∶𝒦𝒫 (𝐹 )𝑏𝑎 → 𝐹 𝑏

𝑎 for each interval [𝑎,𝑏] in . As 𝒦𝒫 (𝐹 )𝑏𝑎 is a colimit,
there exists only one such arrow. We define 𝜂𝐹 𝑏

𝑎
to be this unique arrow, as illustrated in the commutative

diagram on the left:
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𝐹 𝑏
𝑎 𝐹 𝑏

𝑎

𝒦𝒫 (𝐹 )𝑏𝑎 𝒫𝒦 (𝐹 )𝑏𝑎

𝐹 𝑎
𝑎 = 𝒫 (𝐹 )𝑎𝑎 𝐹 𝑏

𝑏 = 𝒫 (𝐹 )𝑏𝑏 𝐹 𝑎
𝑎 =𝒦 (𝐹 )𝑎𝑎 𝐹 𝑏

𝑏 =𝒦 (𝐹 )𝑏𝑏

𝒫 (𝐹 )𝑏𝑎 𝒦 (𝐹 )𝑏𝑎

⌟

𝜂𝐹𝑏
𝑎

𝜖𝐹𝑏
𝑎

⌟

Applying a dual argument, we can construct 𝒫𝒦
𝜖
←←←←←←→ 𝟣𝖯𝖾(𝖨,𝖣) using the natural transformations 𝜖𝐹 𝑏

𝑎
, as il-

lustrated in the diagram on the right. The existence of these natural transformations 𝜂 and 𝜖 is sufficient to
ensure that the triangle identities commute. This is attributed to the universal map properties of 𝒦𝒫 (𝐹 )𝑏𝑎 and
𝒫𝒦 (𝐹 )𝑏𝑎, respectively. ■

From a practical perspective, Theorem 2.10 implies that in general there is the potential for a loss of in-
formation when one passes from one perspective (the persistent one, say) to another (the cumulative one) and
back again. Furthermore the precise way in which this information may be lost is explicitly codified by the
unit 𝜂 and co-unit 𝜖 of the adjunction. These observations, which were hidden in other encodings of temporal
data [33, 24, 10], are of great practical relevance since it means that one must take a great deal of care when
collecting temporal data: the choices of mathematical representations may not be interchangeable.

2.4 Collecting Examples: Narratives are Everywhere
Temporal graphs. Think of satellites orbiting around the earth where, at each given time, the distance be-
tween any two given satellites determines their ability to communicate. To understand whether a signal can
be sent from one satellite to another one needs a temporal graph: it does not suffice to solely know the static
structure of the time-indexed communication networks between these satellites, but instead one needs to also
keep track of the relationships between these snapshots. We can achieve this with narratives of graphs, namely
cosheaves (or sheaves, if one is interested in the persistent model) of the form ∶ 𝖳→ 𝖦𝗋𝗉𝗁 from a time cate-
gory 𝖳 into 𝖦𝗋𝗉𝗁, a category of graphs. There are many ways in which one could define categories of graphs;
for the purposes of recovering definitions from the literature we will now briefly review the category of graphs
we choose to work with.

We view graphs as objects in 𝖲𝖾𝗍𝖲𝖦𝗋, the functor category from the graph schema to set. It has as objects
functors 𝐺∶ 𝖲𝖦𝗋 → 𝖲𝖾𝗍 where 𝖲𝖦𝗋 is thought of as a schema category with only two objects called 𝐸 and 𝑉
and two non-identity morphisms 𝑠, 𝑡∶ 𝐸 → 𝑉 which should be thought as mnemonics for ‘source’ and ‘target’.
We claim that 𝖲𝖾𝗍𝖲𝖦𝗋 is the category of directed multigraphs and graph homomorphisms. To see this, notice
that any functor 𝐺∶ 𝖲𝖦𝗋 → 𝖲𝖾𝗍 consists of two sets: 𝐺(𝐸) (the edge set) and 𝐺(𝑉 ) (the vertex set). Moreover
each edge 𝑒∈𝐺(𝐸) gets mapped to two vertices (namely its source 𝐺(𝑠)(𝑒) and target 𝐺(𝑡)(𝑒)) via the functions
𝐺(𝑠)∶ 𝐺(𝐸)→𝐺(𝑉 ) and 𝐺(𝑡)∶ 𝐺(𝐸)→𝐺(𝑉 ). Arrows in 𝖲𝖾𝗍𝖲𝖦𝗋 are natural transformations between functors.
To see that natural transformations 𝜂∶ 𝐺 ⇒𝐻 define graph homomorphisms, note that any such 𝜂 consists of
functions 𝜂𝐸 ∶ 𝐺(𝐸)→𝐻(𝐸) and 𝜂𝑉 ∶ 𝐺(𝑉 )→𝐻(𝑉 ) (its components at 𝐸 and 𝑉 ) which commute with the
source and target maps of 𝐺 and 𝐻 .

The simplest definition of temporal graphs in the literature is that due to Kempe, Kleinberg and Kumar [24]
which views temporal graphs as a sequence of edge sets over a fixed vertex set.
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𝑎

𝑏 𝑐

𝑑
𝐺0

𝑎

𝑏 𝑐

𝑑
𝐺1

𝑎

𝑏 𝑐

𝑑
𝐺2

(a) A temporal graph  (in the sense of Definition 2.11) with three snapshots

𝑎
𝑏 𝑐

𝑑

𝑎
𝑏 𝑐

𝑑 𝑎
𝑏 𝑐

𝑑

𝑎
𝑏 𝑐

𝑑 𝑎
𝑏 𝑐

𝑑 𝑎
𝑏 𝑐

𝑑

(b) The persistent narrative of 

𝑎
𝑏 𝑐

𝑑

𝑎
𝑏 𝑐

𝑑 𝑎
𝑏 𝑐

𝑑

𝑎
𝑏 𝑐

𝑑 𝑎
𝑏 𝑐

𝑑 𝑎
𝑏 𝑐

𝑑

(c) The cumulative narrative of 
Figure 1: A temporal graph along with its persistent and cumulative narratives

Definition 2.11 ([24]). A temporal graph  consists of a pair (𝑉 , (𝐸𝑖)𝑖∈ℕ
) where 𝑉 is a set and (𝐸𝑖)𝑖∈ℕ is

a sequence of binary relations on 𝑉 .
The above definition can be immediately formulated in terms of our discrete cumulative (resp. persistent)

graph narratives whereby a temporal graph is a cumulative narrative valued in the category 𝖲𝖾𝗍𝖲𝖦𝗋 with discrete
time. To see this, observe that, since Definition 2.11 assumes a fixed vertex set and since it assumes simple
graphs, the cospans (resp. spans) can be inferred from the snapshots (see Figure 1 for examples). For instance,
in the persistent case, there is one maximum common subgraph to use as the apex of each span associated to the
inclusions of intervals of length zero into intervals of length one. This, combined with Proposition 2.9 yields a
unique persistent graph narrative which encodes any given temporal graph (as given in Definition 2.11).

Notice that once an edge or vertex disappears in a persistent (or cumulative) graph narrative, it can never
reappear: the only way to reconnect two vertices is to create an entirely new edge. In particular this means that
cumulative graph narratives associate to most intervals of time a multigraph rather than a simple graph (see
Figure 1c). This is a very natural requirement, for instance: imagining a good being delivered from 𝑢 to 𝑣 at
times 𝑡 and 𝑡′, it is clear that the goods need not be delivered by the same person and, in any event, the very acts
of delivery are different occurrences.

As shown by Patterson, Lynch and Fairbanks [35], by passing to slice categories, one can furthermore
encode various categories of labelled data. For instance, one can fix the monoid of natural numbers viewed as
a single-vertex graph with a loop edge for each natural number 𝐺𝐵ℕ ∶ 𝖲𝖦𝗋 → 𝖲𝖾𝗍 having 𝐺𝐵ℕ(𝑉 ) = 1 and
𝐺𝐵ℕ(𝐸) = ℕ) and consider the slice category 𝖲𝖾𝗍𝖲𝖦𝗋∕𝐺𝐵ℕ. This will have pairs (𝐺,𝜆∶ 𝐺 → 𝐺𝐵ℕ) as objects
where 𝐺 is a graph and 𝜆 is a graph homomorphism effectively assigning a natural number label to each edge
of 𝐺. The morphisms of 𝖲𝖾𝗍𝖲𝖦𝗋∕𝐺𝐵ℕ are label-preserving graph homomorphisms. Thus narratives valued in
𝐺𝐵ℕ ∶ 𝖲𝖦𝗋 → 𝖲𝖾𝗍 can be interpreted as time-varying graphs whose edges come equipped with latencies
(which can change with time).

By similar arguments, it can be easily shown that one can encode categories of graphs which have labeled
vertices and labeled edges [35]. Narratives in such categories correspond to time-varying graphs equipped with
both vertex- and edge-latencies. This allows us to recover the following notion, due to Casteigts, Flocchini,
Quattrociocchi and Santoro, of a time-varying graph which has recently attracted much attention in the literature.

Definition 2.12 (Section 2 in [10]). Take 𝕋 to be either ℕ or ℝ. A 𝕋 -temporal (directed) network is a
quintuple (𝐺,𝜌𝑒, 𝜂𝑒,𝜌𝑣, 𝜂𝑣) where 𝐺 is a (directed) graph and 𝜌𝑒, 𝜂𝑒, 𝜌𝑣 and 𝜂𝑣 are functions of the following
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types:
𝜌𝑒 ∶ 𝐸(𝐺)×𝕋 → {⊥,⊤}, 𝜂𝑒 ∶ 𝐸(𝐺)×𝕋 → 𝕋 ,
𝜌𝑣 ∶ 𝑉 (𝐺)×𝕋 → {⊥,⊤}, 𝜂𝑣 ∶ 𝑉 (𝐺)×𝕋 → 𝕋

where 𝜌𝑒 and 𝜌𝑣 are are functions indicating whether an edge or vertex is active at a given time and where
𝜂𝑒 and 𝜂𝑣 are latency functions indicating the amount of time required to traverse an edge or vertex.

We point out that this definition, stated as in [10] does not enforce any coherence conditions to ensure that
edges are present at times in which their endpoints are. Our approach, in contrast, comes immediately equipped
with all such necessary coherence conditions.

Other structures. There exist diverse types of graphs, such as reflexive, symmetric, and half-edge graphs,
each characterized by the nature of the relation aimed to be modeled. Each graph type assemble into specific cat-
egories, and the selection of graph categories distinctly shapes the resulting graph narratives. To systematically
investigate the construction of various graph narratives, we employ a category-theoretic trick. This involves
encoding these diverse graphs as functors, specifically set-valued copresheaves, over a domain category known
as a schema. The schema encapsulates the syntax of a particular graph type (e.g., symmetric graphs, reflexive
graphs, etc.), allowing us to encode a multitude of structures. Notable examples of such schemata include 𝖲𝖲𝖦𝗋,
reflexive graphs 𝖲𝖱𝖦𝗋, symmetric-and-reflexive graphs 𝖲𝖲𝖱𝖦𝗋 and half-edge graphs 𝖲𝖧𝖾𝖦𝗋.

𝐸 𝐸 𝐸 𝐻

𝑉 𝑉 𝑉 𝑉

s.t. 𝑠◦𝑖 = 𝑡 and 𝑡◦𝑖 = 𝑠 s.t. 𝑠◦𝓁 = 𝑡◦𝓁 s.t. 𝑠◦𝑖 = 𝑡 and 𝑡◦𝑖 = 𝑠 and 𝑠◦𝓁 = 𝑡◦𝓁 s.t. 𝗂𝗇𝗏◦𝗂𝗇𝗏 = 𝗂𝖽𝐻

𝑖

𝑠 𝑡 𝑠 𝑡

𝑖

𝑠 𝑡

𝑖𝑛𝑣

𝓁 𝓁 𝑒

These are all subcategories of multigraphs but other relational structures of higher order such as Petri nets
and simplicial complexes can also be constructed using this approach. For instance, the following is the schema
for Petri nets [35]:

𝖨𝗇𝗉𝗎𝗍

𝖳𝗈𝗄𝖾𝗇 𝖲𝗉𝖾𝖼𝗂𝖾𝗌 𝖳𝗋𝖺𝗇𝗌𝗂𝗍𝗂𝗈𝗇

𝖮𝗎𝗍𝗉𝗎𝗍

It is known that all of these categories of 𝖢𝖲𝖾𝗍𝗌 are topoi (and thus admit limits and colimits which are
computed point-wise) and thus we can define narratives as presheaves 𝐹 ∶ 𝖳𝑜𝑝 → 𝖢𝖲𝖾𝗍 satisfying the sheaf
condition stated in Proposition 2.7 for any choice of schema (e.g., 𝖲𝖲𝖦𝗋, 𝖲𝖱𝖦𝗋, 𝖲𝖲𝖱𝖦𝗋 𝖲𝖧𝖾𝖦𝗋, etc.).
Note 2.13 (Beyond relational structures). Proposition 2.7 indeed states that we can define narratives valued in
any category that has limits and/or colimits. For instance, the category 𝖬𝖾𝗍 of metric spaces and contractions is
a complete category, allowing us to study persistent 𝖬𝖾𝗍-narratives. Diagram 4 illustrates a 𝖬𝖾𝗍-narrative that
recounts the story of how the geographical distances of ice cream companies in Venice changed over time. Each
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snapshot (depicted in pink) represents a metric space, and all morphisms are canonical isometries. The curious
reader can use it to speculate about why company 𝑏 ceased its activities and what happened to the physical
facilities of companies 𝑎1 and 𝑐.

𝐹 1
1 𝐹 2

2

𝐹 2
1 𝐹 3

2

𝐹 3
3

𝑓 2
2,3𝑓 1

1,2 𝑓 2
1,2 𝑓 3

2,3

𝑎1

𝑎2
𝑐

𝑏

𝑎1

𝑎2
𝑐

𝑏′
𝑎∗

𝑐

𝑏′
𝑎∗

𝑐′
𝑎∗

𝑏′ (4)

2.5 Temporal Analogues of Static Properties
The theory of static data (be it graph theory, group theory, etc.) is far better understood than its temporal
counterpart (temporal graphs, temporal groups, etc.). For this reason and since static properties are often easier
to think of, it is natural to try to lift notions from the static setting to the temporal.

This idea has been employed very often in temporal graph theory for instance with the notion of a temporal
path. In this section we will consider temporal paths and their definition in terms of graph narratives. This
section is a case-study intended to motivate our more general approach in Section 2.5.

2.5.1 Temporal Paths

As we mentioned in Section 1.1, one easy way of defining the notion of a temporal path in a temporal graph
 is to simply declare it to be a path in the underlying static graph of . However, at first glance (and we will
address this later on) this notion does not seem to be particularly ‘temporal’ since it is forgetting entirely the
various temporal relationships between edges and vertices. In contrast (using Kempe et. al.’s Definition 2.11 of
a temporal graph) temporal paths are usually defined as follows (we say that these notions are “𝐾3-temporal” to
make it clear that they are defined in terms of Kempe, Kleinberg and Kumar’s definition of a temporal graph).

Definition 2.14 (𝐾3-temporal paths and walks). Given vertices 𝑥 and 𝑦 in a temporal graph (𝐺,𝜏), a
temporal (𝑥,𝑦)-walk is a sequence 𝑊 = (𝑒1, 𝑡1),… , (𝑒𝑛, 𝑡𝑛) of edge-time pairs such that 𝑒1,… , 𝑒𝑛 is a walk
in 𝐺 starting at 𝑥 and ending at 𝑦 and such that 𝑒𝑖 is active at time 𝑡𝑖 and 𝑡1 ≤ 𝑡2 ≤⋯ ≤ 𝑡𝑛. We say that a
temporal (𝑥,𝑦)-walk is closed if 𝑥 = 𝑦 and we say that it is strict if the times of the walk form a strictly
increasing sequence.

Using this definition, one also has the following natural decision problem on temporal graphs.

𝑇 𝑒𝑚𝑝𝐾3𝑃𝑎𝑡ℎ𝑛
Input: a 𝐾3-temporal graph 𝐺 ∶= (𝑉 , (𝐸𝑖)𝑖∈ℕ) and an 𝑛 ∈ ℕ
Task: determine if there exists a 𝐾3-temporal path of length at least 𝑛 in 𝐺.

Notice that in static graph theory most computational problems can be cast as homomorphism problems in
appropriate categories of graphs. For instance, the question of determining whether a fixed graph 𝐺 admits a
path of length at least 𝑛 is equivalent to asking if there is at least one injective homomorphism 𝑃𝑛 ↪ 𝐺 from
the 𝑛-path to 𝐺. Similarly, if we wish to ask if 𝐺 contains a clique on 𝑛 vertices as a minor3, then this is simply

3Recall that a contraction of a graph 𝐺 is a surjective graph homomorphism 𝑞∶ 𝐺↠𝐺′ such that every preimage of 𝑞 is connected in
𝐺 (equivalently 𝐺′ is obtained from 𝐺 by a sequence of edge contractions). A minor of a graph 𝐺 is a subgraph 𝐻 of a contraction 𝐺′ of
𝐺.
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a homomorphism problem in the category 𝖦𝗋𝗉𝗁⪯ having graphs as objects and graph minors as morphisms: 𝐺
contains 𝐾𝑛 as a minor if and only if the hom-set 𝖦𝗋𝗉𝗁⪯(𝐾𝑛,𝐺) is nonempty.

Wishing to emulate this pattern from traditional graph theory, one immediately notices that, in order to
define notions such as temporal paths, cliques and colorings (to name but a few), one first needs two things:

1. a notion of morphism of temporal graphs and
2. a way of lifting graph classes to classes of temporal graphs (for instance defining temporal path-graphs,

temporal complete graphs, etc...).
Fortunately our narratives come equipped with a notion of morphism (these are simply natural transformations
between the functors encoding the narratives). Thus, all that remains to be determined is how to convert classes
of graphs into classes of temporal graphs. More generally we find ourselves interested in converting classes
of objects of any category 𝖢 into classes of 𝖢-narratives. We will address these questions in an even more
general manner (Propositions 2.15 and 2.16) by developing a systematic way for converting 𝖢-narratives into
𝖣-narratives whenever we have certain kinds of data-conversion functors 𝐾 ∶ 𝖢→𝖣.

Proposition 2.15 (Covariant Change of base). Let𝖢 and𝖣 be categories with limits (resp. colimits) and let
𝖳 be any time category. If 𝐾 ∶ 𝖢→𝖣 is a continuous functor, then composition with 𝐾 determines a func-
tor (𝐾◦−) from persistent (resp. cumulative) 𝖢-narratives to persistent (resp. cumulative) 𝖣-narratives.
Spelling this out explicitly for the case of persistent narratives, we have:

(𝐾◦−)∶ 𝖯𝖾(𝖳,𝖢)→ 𝖯𝖾(𝖳,𝖣)
(𝐾◦−)∶ (𝐹 ∶ 𝑇 𝑜𝑝 →𝖢)↦ (𝐾◦𝐹 ∶ 𝑇 𝑜𝑝 →𝖣).

Proof. It is standard to show that 𝐾◦𝐹 is a functor of presheaf categories, so all that remains is to show that
it maps any 𝖢-narrative 𝐹 ∶ 𝑇 𝑜𝑝 → 𝖢 to an appropriate sheaf. This follows immediately since 𝐾 preserves
limits: for any cover ([𝑎,𝑝], [𝑝,𝑏]) of any interval [𝑎,𝑏]we have (𝐾◦𝐹 )([𝑎,𝑏])) =𝐾(𝐹 ([𝑎,𝑝])×𝐹 ([𝑝,𝑝])𝐹 ([𝑝,𝑏])) =
(𝐾◦𝐹 )([𝑎,𝑝])×(𝐾◦𝐹 )([𝑝,𝑝]) (𝐾◦𝐹 )([𝑝,𝑏])). By duality the case of cumulative narratives follows. ■

Notice that one also has change of base functors for any contravariant functor 𝐿∶ 𝖢𝑜𝑝 →𝖣 taking limits in
𝖢 to colimits in 𝖣. This yields the following result (which can be proven in the same way as Proposition 2.15).

Proposition 2.16 (Contravariant Change of base). Let 𝖢 be a category with limits (resp. colimits) and
𝖣 be a category with colimits (resp. limits) and let 𝖳 be any time category. If 𝐾 ∶ 𝖢𝑜𝑝 → 𝖣 is a functor
taking limits to colimits (resp. colimits to limits), then the composition with 𝐾 determines a functor from
persistent (resp. cumulative) 𝖢-narratives to cumulative (resp. persistent) 𝖣-narratives.

To see how these change of base functors are relevant to lifting classes of objects in any category 𝖢 to
corresponding classes of 𝖢-narratives, observe that any such class 𝖯 of objects in 𝖢 can be identified with a
subcategory 𝑃 ∶ 𝖯 → 𝖢. One should think of this as a functor which picks out those objects of 𝖢 that satisfy a
given property 𝑃 . Now, if this functor 𝑃 is continuous, then we can apply Proposition 2.15 to identify a class

(𝑃◦−)∶ 𝖯𝖾(𝖳,𝖯)→ 𝖯𝖾(𝖳,𝖢) (5)
of 𝖢-narratives which satisfy the property 𝑃 at all times. Similar arguments let us determine how to specify
temporal analogues of properties under the cumulative perspective. For example, consider the full subcategory
𝔓∶ 𝖯𝖺𝗍𝗁𝗌 ↪ 𝖦𝗋𝗉𝗁 which defines the category of all paths and the morphisms between them. As the following
proposition shows, the functor 𝔓 determines a subcategory 𝖢𝗎(𝑇 ,𝖯𝖺𝗍𝗁𝗌) ↪ 𝖢𝗎(𝑇 ,𝖦𝗋𝗉𝗁) whose objects are
temporal path-graphs.
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Proposition 2.17. The monic cosheaves in 𝖢𝗎(𝖳,𝖯𝖺𝗍𝗁𝗌) determine temporal graphs (in the sense of Defi-
nition 2.11) whose underlying static graph over any interval of time is a path. Furthermore, for any graph
narrative  ∈ 𝖢𝗎(𝖳,𝖦𝗋𝗉𝗁) all of the temporal paths in  assemble into a poset 𝖲𝗎𝖻(𝔓◦−)() defined as the
subcategory of the subobject category 𝖲𝗎𝖻() whose objects are in the range of (𝔓◦−). Finally, strict tem-
poral paths in a graph narrative  consists of all those monomorphism 𝔓()↪  where the path narrative
 in 𝖲𝗎𝖻(𝔓◦−)() sends each instantaneous interval (i.e. one of the form [𝑡, 𝑡]) to a single-edge path.

Proof. Since categories of copresheaves are adhesive [27] (thus their pushouts preserve monomorphims), one
can verify that, when they exists (pushouts of paths need not be paths in general), pushouts in 𝖯𝖺𝗍𝗁𝗌 are given
by computing pushouts in 𝖦𝗋𝗉𝗁. Thus a monic cosheaf  in 𝖢𝗎(𝖳,𝖯𝖺𝗍𝗁𝗌) is necessarily determined by paths for
each interval of time that combine (by pushout) into paths at longer intervals, as desired. Finally, by noticing
that monomorphisms of (co)sheaves are simply natural transformations whose components are all monic, one
can verify that any monormphism from 𝔓() to  in the category of graph narratives determines a temporal
path of  and that this temporal path is strict if ([𝑡, 𝑡]) is a path on at most one edge for all 𝑡 ∈ 𝑇 . Finally,
as is standard in category theory [4], observe that one can collect all such monomorphisms (varying  over
all objects of 𝖢𝗎(𝖳,𝖯𝖺𝗍𝗁𝗌)) into a subposet of the subobject poset of , which, by our preceding observation,
determines all of the temporal paths in . ■

Comparing the Cumulative to the Persistent. Given Proposition 2.17 one might wonder what a temporal
path looks like under the persistent perspective. By duality (and since pullbacks preserve monomorphisms and
connected subgraphs of paths are paths) one can see that monic persistent path narratives must consist of paths
at each snapshot satisfying the property that over any interval the data persisting over that interval is itself a
path.

Since applying the functor 𝒫 ∶ 𝖢𝗎(𝖳,𝖯𝖺𝗍𝗁𝗌)→𝖯𝖾(𝖳,𝖯𝖺𝗍𝗁𝗌) of Theorem 2.10 turns any cumulative path nar-
rative into a persistent one, it seem at first glance that there is not much distinction between persistent temporal
paths and those defined cumulatively in Proposition 2.17. However, the distinction becomes apparent once
one realises that in general we cannot simply turn a persistent path narrative into a cumulative one: in general
arbitrary pushouts of paths need not be paths (they can give rise to trees).

Realizing the distinctions between cumulative and persistent paths is a pedagogical example of a subtlety
that our systematic approach to the study of temporal data can uncover but that would otherwise easily go
unnoticed: in short, this amounts to the fact that studying the problem of the temporal tree (defined below) is
equivalent to studying the persistent temporal path problem.

To make this idea precise, consider the adjunction

𝖢𝗎(𝖳,𝖦𝗋𝗉𝗁𝑚𝑜𝑛𝑜) 𝖯𝖾(𝖳,𝖦𝗋𝗉𝗁𝑚𝑜𝑛𝑜)
𝒫

𝒦

⊣

given to us by Theorem 2.10 (notice that the result applies since 𝖦𝗋𝗉𝗁 has all limits and colimits). This together
with Proposition 2.15 applied to the full subcategory 𝔗∶ 𝖳𝗋𝖾𝖾𝗌𝑚𝑜𝑛𝑜 →𝖦𝗋𝗉𝗁𝑚𝑜𝑛𝑜 yields the following diagram.

𝖢𝗎(𝖳,𝖳𝗋𝖾𝖾𝗌𝑚𝑜𝑛𝑜) 𝖢𝗎(𝖳,𝖦𝗋𝗉𝗁𝑚𝑜𝑛𝑜)

𝖯𝖾(𝖳,𝖯𝖺𝗍𝗁𝗌𝑚𝑜𝑛𝑜) 𝖯𝖾(𝖳,𝖦𝗋𝗉𝗁𝑚𝑜𝑛𝑜)
(𝔓◦−)

𝒦

(𝔗◦−)

The pullback (in 𝖢𝖺𝗍) of this diagram yields a category having as objects pairs ( ,) consisting of a cumulative
tree narrative  and a persistent path narrative  such that, when both are viewed as cumulative 𝖦𝗋𝗉𝗁𝑚𝑜𝑛𝑜-narratives, they give rise to the same narrative. Since the adjunction of Theorem 2.10 restricts to an equivalence
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of categories, we have the question of determining whether a cumulative graph narrative  contains 𝔗( ) as
a sub-narrative can be reduced to the question of determining whether  is a persistent path sub-narrative of
𝒫 ().

Aside 2.18. Although it is far beyond the scope of this paper, we believe that there is a wealth of under-
standing of temporal data (and in particular temporal graphs) to be gained from the interplay of lifting
graph properties and the persistent-cumulative adjunction of Theorem 2.10. For instance the preceding
discussion shows that one can equivalently study persistent paths instead of thinking about cumulative
temporal trees. Since persistent paths are arguably easier to think about (because paths are fundamentally
simpler objects than trees) it would stand to reason that this hidden connection between these classes of
narratives could aid in making new observations that have so far been missed.

2.5.2 Changing the Resolution of Temporal Analogues.

As we have done so far, imagine collecting data over time from some hidden dynamical system and suppose,
after some exploratory analysis of our data, that we notice the emergence of some properties in our data that
are only visible at a certain temporal resolution. For example it might be that some property of interest is only
visible if we accumulate all of the data we collected over time intervals whose duration is at least ten seconds.

In contrast notice that the temporal notions obtained solely by ‘change of base’ (i.e. via functors such as (5))
are very strict: not only do they require each instantaneous snapshot to satisfy the given property 𝑃 , they also
require the property to be satisfied by any data that persists (or, depending on the perspective, accumulates) over
time. For instance the category of temporal paths of Proposition 2.17 consists of graph narratives that are paths
at all intervals. In this section we will instead give a general, more permissive definition of temporal analogues
or static notions. This definition will account for the fact that one is often only interested in properties that
emerge at certain temporal resolutions, but not necessarily others.

To achieve this, we will briefly explain how to functorially change the temporal resolution of our narratives
(Proposition 2.19). Then, combining this with our change of base functors (Propositions 2.15 and 2.16) we will
give an extremely general definition of a temporal analogue of a static property. The fact that this definition is
parametric in the temporal resolution combined with the adjunction that relates cumulative and persistent nar-
ratives (Theorem 2.10) leads to a luscious landscape of temporal notions whose richness can be systematically
studied via our category-theoretic perspective.

Proposition 2.19 (Change of Temporal Resolution). Let 𝖳 be a time category and 𝖲
𝜏
←←←←→ 𝖳 be a sub-join-

semilattice thereof. Then, for any category 𝖢 with (co)limits, there is a functor (−◦𝜏) taking persistent
(resp. cumulative) 𝖢 narratives with time 𝑇 to narratives of the same kind with time 𝑆.

Proof. By standard arguments the functor is defined by post composition as
(−◦𝜏)∶ 𝖢𝗎(𝖳,𝖢)→𝖢𝗎(𝖲,𝖢) where (−◦𝜏)∶

(

 ∶ 𝖳→ 𝖢
)

↦
(

 ◦𝜏 ∶ 𝖲 → 𝖢
)

.

The persistent case is defined in the same way. ■

Thus, given a sub-join-semilattice 𝜏 ∶ 𝑆 ↪ 𝑇 of some time-category 𝖳, we would like to specify the col-
lection of objects of a category of narratives that satisfy some given property 𝑃 only over the intervals in 𝑆. A
slick way of defining this is via a pullback of functors as in the following definition.

Definition 2.20. Let 𝜏 ∶ 𝖲 ↪ 𝖳 be a sub-join-semilattice of a time category 𝖳 let 𝖢 be a category with
limits and let 𝑃 ∶ 𝖯 ↪ 𝖢 be a continuous functor. Then we say that a persistent 𝖢-narrative with time 𝖳
𝜏-satisfies the property 𝑃 if it is in the image of the pullback (i.e. the red, dashed functor in the following
diagram) of (−◦𝜏) along (𝑃◦−◦𝜏). An analogous definition also holds for cumulative narratives when 𝖢

18



has colimits and 𝖯 is continuous.

𝖯𝖾(𝖳,𝖯) 𝖯𝖾(𝖲,𝖯) 𝖯𝖾(𝖲,𝖢)

𝖯𝖾(𝖳,𝖢)×𝖯𝖾(𝖲,𝖯) 𝖯𝖾(𝖳,𝖯) 𝖯𝖾(𝖳,𝖢)

(𝑃◦−)(−◦𝜏)

(−◦𝜏)

⌟

As a proof of concept, we shall see how Definition 2.20 can be used to recover notions of temporal cliques
as introduced by Viard, Latapy and Magnien [42].

Temporal cliques were thought of as models of groups of people that commonly interact with each other
within temporal contact networks. Given the apparent usefulness of this notion in epidemiological modeling and
since the task of finding temporal cliques is algorithmically challenging, this notion has received considerable
attention recently [19, 6, 7, 20, 34, 41]. They are typically defined in terms of Kempe, Kleinberg and Kumar’s
definition of a temporal graph (Definition 2.11) (or equivalently in terms of link streams) where one declares a
temporal clique to be a vertex subset 𝑆 of the time-invariant vertex set such that, cumulatively, over any interval
of length at least some given 𝑘, 𝑆 induces a clique. The formal definition follows.

Definition 2.21 ([42]). Given a 𝐾3-temporal graph 𝐺 ∶= (𝑉 , (𝐸𝑖)𝑖∈ℕ) and an 𝑛 ∈ ℕ, a subset 𝑆 of 𝑉 is
said to be a temporal 𝑘 clique if |𝑆| ≥ 𝑘 and if for all intervals [𝑎,𝑏] of length 𝑛 in ℕ (i.e. 𝑏 = 𝑎+𝑛−1)
one has that: for all 𝑥,𝑦 ∈ 𝑆 there is an edge incident with both 𝑥 and 𝑦 in ⋃

𝑡∈[𝑎,𝑏]𝐸𝑡.
Now we will see how we can obtain the above definition as an instance of our general construction of

Definition 2.20. We should note that the following proposition is far more than simply recasting a known
definition into more general language. Rather, it is about simultaneously achieving two goals at once.

1. It is showing that the instantiation of our general machinery (Definition 2.20) recovers the specialized
definition (Definition 2.21).

2. It provides an alternative characterization of temporal cliques in terms of morphisms of temporal graphs.
This generalizes the traditional definitions of cliques in static graph theory as injective homomorphisms
into a graph from a complete graph.

Proposition 2.22. Let 𝜅≥𝑘 ∶ 𝖢𝗈𝗆𝗉𝗅𝖾𝗍𝖾≥𝑘 ↪ 𝖦𝗋𝗉𝗁 be the subcategory of 𝖦𝗋𝗉𝗁 whose objects are com-
plete graphs on at least 𝑘 vertices and let 𝜏≥𝑛 ∶ 𝑇 → 𝖨ℕ be the sub-join-semilattice of 𝖨ℕ whose objects
are intervals of 𝖳ℕ length at least 𝑛. Consider any graph narrative  which 𝜏𝑛-satisfies 𝜅≥𝑘 then all of
its instantaneous snapshots ([𝑡, 𝑡]) have at least 𝑘 vertices. Furthermore consider any monomorphism
𝑓 ∶  ↪  from such a  to any given cumulative graph narrative . If  preserves monomorphisms,
then we have that: every such morphism of narratives 𝑓 determines a temporal clique in  (in the sense of
Definition 2.21) and moreover all temporal cliques in  are determined by morphisms of this kind.

Proof. First of all observe that if a pushout 𝐿+𝑀 𝑅 of a span graphs 𝐿 𝓁
←←←←←←←←𝑀

𝑟
←←←←←→ 𝑅 is a complete graph, then

we must have that at least one of the graph homomorphisms 𝓁 and 𝑟 must be surjective on the vertex set (if not
then there would be some vertex of 𝐿 not adjacent to some vertex of 𝑅 in the pushout). With this in mind now
consider any cumulative graph narrative  which 𝜏≥𝑛-satisfies 𝜅≥𝑘. By Definition 2.20 this means that for all
intervals [𝑎,𝑏] of length at least 𝑛 the graph ([𝑎,𝑏]) is in the range of 𝜅≥𝑘: i.e. it is a complete graph on at least
𝑘 vertices. This combined with the fact that  is a cumulative narrative implies that every pushout of the form

([𝑎,𝑝])+([𝑝,𝑝])([𝑝,𝑏])

yields a complete graph and hence every pair of arrows
([𝑎,𝑝])

𝓁
←←←←←←←←([𝑝,𝑝])

𝑟
←←←←←→([𝑝,𝑏])
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must have at least one of 𝓁 or 𝑟 surjective. From this one deduces that for all times 𝑡 ≥ 𝑛 every instantaneous
graph ([𝑡, 𝑡]) must have at least 𝑘 vertices: since  𝜏≥𝑛-satisfies 𝜅≥𝑘, the pushout of the span

([𝑡−𝑛+1, 𝑡])+([𝑡,𝑡])([𝑡, 𝑡+𝑛−1])

must be a complete graph on at least 𝑘 vertices and this is also true of both feet of this span, thus we are done
by applying the previous observation.

Observe that, if 𝑆 is a vertex set in  which determines a temporal clique in the sense of Definition 2.21, then
this immediately determines a cumulative graph narrative  which 𝜏≥𝑛-satisfies 𝜅≥𝑘 and that has a monomor-
phism into : for any interval [𝑎,𝑏], ([𝑎,𝑏]) is defined as the restriction (i.e. induced subgraph) of ([𝑎,𝑏]) to
the vertices in 𝑆. The fact that  preserves monomorphisms follows since  does.

For the converse direction, notice that, if  preserves monomorphisms (i.e. the projection maps of its
cosheaf structure are monomorphisms), then, by what we just argued, for any interval [𝑎,𝑏]we have |([𝑎,𝑏])|≥
|([𝑎,𝑎])| ≥ 𝑘. Thus, since all of the graphs of sections have a lower bound on their size, we have that there
must exist some time 𝑡 such that ([𝑡, 𝑡+𝑛−1]) has minimum number of vertices. We claim that the vertex-set
of ([𝑡, 𝑡+𝑛−1]) defines a temporal clique in  (in the sense of Definition 2.21). To that end, all that we need
to show is that the entire vertex set of ([𝑡, 𝑡+𝑛−1]) is active in every interval of length exactly 𝑛. To see why,
note that, since all of the projection maps in the cosheaf  are monic, every interval of length at least 𝑛 will
contain all of the vertex set of ([𝑡, 𝑡+ 𝑛−1]); furthermore each pair of vertices will be connected by at least
one edge in the graphs associated to such intervals since  𝜏≥𝑛-satisfies 𝜅≥𝑘.

Thus, to conclude the proof, it suffices to show that for all times 𝑠 ≥ 𝑛−1 we have that every vertex of
([𝑡, 𝑡+ 𝑛−1]) is contained in ([𝑠,𝑠]) (notice that for smaller 𝑠 there is nothing to show since there is no
interval [𝑠′, 𝑠] of length at least 𝑛 which needs to witness a clique on the vertex set of ([𝑡, 𝑡+𝑛−1])). To that
end we distinguish three cases.

1. Suppose 𝑠 ∉ [𝑡, 𝑡+𝑛−1], then, if 𝑠 > 𝑡+𝑛−1, consider the diagram of monomorphisms
([𝑡, 𝑠])

([𝑡, 𝑡+𝑛−1]) ([𝑠,𝑠+𝑛−1])

([𝑠,𝑠])

𝑟

𝓁

and observe by our previous arguments that 𝓁 or 𝑟 must be surjective on vertices. We claim that 𝓁 is
always a vertex-surjection: if 𝑟 is surjective on vertices, then, by the minimality of the number of vertices
of ([𝑡, 𝑡+𝑛−1]) and the fact that the diagram is monic, we must have that 𝓁 is surjective on vertices. But
then this yields the desired result since we have a diagram of monomorphisms. Otherwise, if 𝑠 < 𝑡 either
𝑠 < 𝑛−1 (in which case there is nothing to show), or a specular argument to the one we just presented for
case of 𝑠 > 𝑡+𝑛−1 suffices.

2. If 𝑠 ∈ [𝑡, 𝑡+𝑛−1], then consider the following diagram
([𝑡−𝑛+1, 𝑡]) ([𝑠−𝑛+1, 𝑠]) ([𝑡, 𝑡+𝑛−1]) ([𝑠,𝑠+𝑛−1]) ([𝑡+𝑛−1, 𝑡+2(𝑛−1)])

([𝑡, 𝑡]) ([𝑠,𝑠]) ([𝑡+𝑛−1, 𝑡+𝑛−1])
𝛽𝛼𝑓 𝑔

and observe that, by the same minimality arguments as in the previous point, we have that 𝑓 and 𝑔 must
be surjective on vertices. By what we argued earlier, one of 𝛼 and 𝛽 must be surjective on vertices; this
combined with the fact that there are monomorphisms

([𝑡, 𝑡])↪([𝑠−𝑛+1, 𝑠]) and ([𝑡+𝑛−1, 𝑡+𝑛−1])↪ [𝑠,𝑠+𝑛−1]

(since 𝑡∈ [𝑠−𝑛+1, 𝑠] and 𝑡+𝑛−1∈ [𝑠,𝑠+𝑛−1]) implies that every vertex of ([𝑡, 𝑡+𝑛−1]) is contained
in ([𝑠,𝑠]) as desired.
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In the world of static graphs, it is well known that dual to the notion of a clique in a graph is that of a
proper coloring. This duality we refer to is not merely aesthetics, it is formal: if a clique in a graph 𝐺 is a
monomorphism from a complete graph 𝐾𝑛 into 𝐺, then a coloring of 𝐺 is a monomorphism 𝐾𝑛 ↪ 𝐺 in the
opposite category. Note that this highlights the fact that different categories of graphs give rise to different
notions of coloring via this definition (for instance note that, although the typical notion of a graph coloring is
defined in terms of irreflexive graphs, the definition given above can be stated in any category of graphs).

In any mature theory of temporal data and at the very least any theory of temporal graphs, one would expect
there to be similar categorical dualities at play. And indeed there are: by dualizing Proposition 2.22, one can
recover different notions of temporal coloring depending on whether one studies the cumulative or persistent
perspectives. This is an illustration of a much deeper phenomenon whereby stating properties of graphs in a
categorical way allows us to both lift them to corresponding temporal analogues while also retaining the ability
to explore how they behave by categorical duality.

3 Discussion: Towards a General Theory of Temporal Data
Here we tackled the problem of building a robust and general theory of temporal data. First we distilled a list of
five desiderata (see (D1), (D2), (D3), (D4), (D5) in Section 1) for any such theory by drawing inspiration from
the study of temporal graphs, a relatively well-developed branch of the mathematics of time-varying data.

Given this list of desiderata, we introduced the notion of a narrative. This is a kind of sheaf on a poset
of intervals (a join-semilattice thereof, to be precise) which assigns to each interval of time an object of a
given category and which relates the objects assigned to different intervals via appropriate restriction maps.
The structure of a sheaf arises immediately from considerations on how to encode the time-varying nature of
data, which is not specific to the kinds of mathematical object one chooses to study (Desideratum (D4)). This
object-agnosticism allows us to use of a single set of definitions to think of time varying graphs or simplicial
complexes or metric spaces or topological spaces or groups or beyond. We expect the systematic study of
different application areas within this formalism to be a very fruitful line of future work. Examples abound,
but, in favor of concreteness, we shall briefly mention two such ideas:

• The shortest paths problem can be categorified in terms of the free category functor [32]. Since this is
an adjoint, it satisfies the continuity requirements to be a change of base functor (Proposition 2.15) and
thus one could define and study temporal versions of the algebraic path problem (a vast generalization of
shortest paths) by relating narratives of graphs to narratives of categories.

• Metabolic networks are cumulative representations of the processes that determine the physiological and
biochemical properties of a cell. These are naturally temporal objects since different reactions may occur
at different times. Since reaction networks, one of the most natural data structures to represent chem-
ical reactions, can be encoded as copresheaves [1], one can study time varying reaction networks via
appropriate narratives valued in these categories.

Encoding temporal data via narratives equips us with a natural choice of morphism of temporal data, namely:
morphism of sheaves. Thus we find that narratives assemble into categories (Desideratum (D1)), a fact that
allows us to leverage categorical duality to find that narratives come in two flavours (cumulative and persistent,
Desideratum (D2) depending on how information is being tracked over time. In sufficiently nice categories,
persistent and cumulative narratives are furthermore connected via an adjunction (Theorem 2.10) which allows
one to convert one description into the other. As is often the case in mathematics, we expect this adjunction to
play an important role for many categories of narratives.

To be able to lift notions from static settings to temporal ones, we find that it suffices to first determine canon-
ical ways to change the temporal resolution of narratives or to change the underlying categories in which they
are valued. Both of these tasks can be achieved functorially (Propositions 2.15 and 2.16 and Proposition 2.19)
and, embracing minimalism, one finds that they are all that is needed to develop a framework for the systematic
lifting of static properties to their temporal counterparts (D3).
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Finally, addressing Desideratum (D4), we showed how to obtain change of base functors (Propositions 2.15
and 2.16) which allows for the conversion of narratives valued in one category to another. In the interest of
a self-contained presentation, we focused on only one application of these functors; namely that of building a
general machinery (Definition 2.20) capable of lifting the definition of a property from any category to suitable
narratives valued in it. However, the change of base functors have more far reaching applications than this and
should instead be thought of as tools for systematically relating different kinds of narratives arising from the
same dynamical system. This line of enquiry deserves its own individual treatment and we believe it to be a
fascinating new direction for future work.

In so far as the connection between data and dynamical systems is concerned (Desideratum (D5)), our
contribution here is to place both the theory of dynamical systems and the theory of temporal data on the same
mathematical and linguistic footing. This relies on the fact that Schultz, Spivak and Vasilakopoulou’s interval
sheaves [39] provide an approach to dynamical systems which is very closely related (both linguistically and
mathematically) to our notion of narratives: both are defined in terms of sheaves on categories of intervals. We
anticipate that exploring this newfound mathematical proximity between the way one represents temporal data
and the axiomatic approach for the theory of dynamical systems will be a very fruitful line of further research
in the years to come.

Acknowledgements. We would like to thank Justin Curry for helpful discussions and for pointing out con-
nections of our work to Topological Data Analysis.
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